

## Decarbonization and Electrification: Beneficial Electrification for Existing Buildings

Melissa Sokolowsky, Northwest Energy Efficiency Council

Rebecca Sheppard, Northwest Energy Efficiency Council

Steve Abercrombie, Sustainable Building Science Technology Program at South Seattle College

March 16, 2023





## Introduction



Melanie Danuser NEEC Smart Buildings Center Rebecca Sheppard NEEC Smart Buildings Center



Melissa Sokolowsky NEEC Smart Buildings Center



Steve Abercrombie Seattle South Colleges









- WHAT: Definitions Electrification and Decarbonization
- WHY and HOW: Goals of Electrification and The Role of Buildings
- Benefits of Electrification
- Overview of Electrification Technology
- Common Barriers
- Strategies to overcome barriers
- Case Study: Seattle Central College's EcoDistrict Project.







# The What

### What is Decarbonization?

## Reduction or elimination of CO<sub>2</sub> emissions

Images source: energy.gov







## What is Electrification?

Replacing technologies that use fossil fuels

- Natural gas
- Petroleum/diesel



## With technologies and systems that use electricity



Images source: energy.gov







### **Carbon Emissions in Existing Buildings**



#### Final energy end use in commercial buildings (based on 2012 CBECS)

Source: National Renewable Energy Laboratory







# The Why

## **Environmental Drivers: GHG Emissions**



Image credit: NASA/JPL-Caltech







## Policy Trends

NORTHWEST ENERGY

**EFFICIENCY COUNCIL** 



CENTER



## The Impact of Buildings

Buildings are the second largest source of greenhouse gas emissions in Washington (2015)

As Washington's population has grown, greenhouse gas emissions from buildings jumped significantly from 1990-2015



The How

## The HOW

Need 50% reduction in carbon emissions by 2030 and zero carbon by 2050

#### Role of the buildings sector:

- 39% of carbon emissions globally
- 80% of buildings that will exist in 2030 already exist today

#### To meet targets:

- 50% renewables in electricity generation by 2030
- Energy-using equipment must be electrified
- Annual energy-efficiency investments need to grow by a factor of four by 2040

Source: Rocky Mountain Institute







## The HOW

To meet the needs of changing energy infrastructure, buildings will need to be:

- More energy-efficient
- Grid-interactive
- Load flexible

#### **Buildings will need to leverage:**

- Onsite generation
- Energy storage (thermal/electric)
- Intelligent, predictive controls that shift, shed and modulate building loads

Buildings can provide grid services needed to support the energy transition

- Seth Coan, RMI Source: Orchestrating the energy transition: Tuning into buildings | Greenbiz







## Utility Response









## Grid Integration

#### **Grid Integrated Building: Load Profiles**











# Benefits of Electrification

## Benefits of Electrification









# Overview of Electrification Technology

## Heat Pumps









## Heat Pump Classification

NORTHWEST ENERGY

**EFFICIENCY COUNCIL** 

| Source        | <ul> <li>air, water, or ground</li> </ul> |
|---------------|-------------------------------------------|
| Distribution  | <ul> <li>ducted or ductless</li> </ul>    |
| Configuration | <ul> <li>packaged or split</li> </ul>     |
| NEEC          |                                           |

CENTER



## Variable Refrigerant Flow (VRF)

- Very efficient
- Multiple zones
- Heating and cooling
- All electric
- Can provide DHW



Image courtesy of Slipstream Inc.







## Domestic Hot Water Heating

- Heat Pump Water Heaters (HPWH)
- Unitary
- Split
- Components:
- Heat pumps
- Hot water storage
- Temp maintenance
- Controls









## Energy/Heat Recovery

- Paired with heat pump systems to increase efficiency
- Energy recovery ventilators (ERVs) or heat recovery ventilators (HRVs)
- Heat recovery chillers









# Barriers

## Barriers

### Technical/Logistical

- Infrastructure limitations
- Hardware and software integration
- Electrical service capacity
- Maintenance support

### Financial

- Upfront costs
   Installation
  - Downtime
- Training/hiring for additional trade skills







# Strategies & Solutions

## Strategies & Solutions

#### Technical/Logistical

- Efficiency measures to reduce need for capacity upgrades
- Thorough planning for retrofits
- Onsite renewables
- Energy storage
  - $\circ$  Thermal
  - Electrical (batteries, EVs)
- Maintenance in-house staff training/ clearly defined outsourced maintenance contract

#### Financial

- End-of-life equipment retrofit opportunities
- Consider total cost of ownership (TCO) including health/safety benefits
- Leverage benefits of smart building technology to reduce operating costs
- Demand response revenue opportunities
- Funding:
  - Creative financing structures
  - Incentives, rebates, grants







## Funding Mechanisms

- Federal/State (e.g. IRA, CBPS) grants
- Utility Incentives
- Pay for Performance
- C-PACER
- Energy Service Performance Contracting (ESPC)
- Energy Efficiency as a Service (EEaS)







### Strategy – Retrofit Planning



#### Opportunity to:

- Accomplish energy efficiency
- Incorporate electric replacement options
- Update electrical infrastructure and meet power requirements
- Introduce and integrate technologies for control and load reduction







## Retrofit and Replacement Considerations

#### Logistical considerations

- Type of equipment to be replaced
- Size/layout of building and equipment
- Climate zones
- Load profiles
- Energy distribution temperatures required
- Electrical service capacity/distribution
- Maintenance skills required

#### **Cost Considerations**

- First cost vs. total cost of ownership (TCO)
- Utility rate structures, incentives and value of resilience

#### Technical Considerations: i.e. Refrigerant types and GWP

- Preventative and reactive maintenance programming, training and technical skills
- Refrigerant management program







## Retrofit and Replacement Considerations (cont.)



## Identifying Replacement Options

| Scenario                                                                                                | Replacement Option                                                                                                                                                                |  |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul><li>Small buildings</li><li>Conventional RTU</li></ul>                                              | Heat pump RTU, ERV/HRV, VRF                                                                                                                                                       |  |
| <ul><li>Medium buildings</li><li>VAV Reheat</li></ul>                                                   | <ul> <li>Heat pump AHUs, ASHPs, multi-pipe with heat recovery</li> </ul>                                                                                                          |  |
| <ul> <li>Large buildings</li> <li>Steam boilers</li> <li>Hot water boilers</li> <li>Chillers</li> </ul> | <ul> <li>Reduce load, weatherization, radiator redesign, VRF</li> <li>ASHPs, WSHPs, VRF</li> <li>Heat recovery chillers, chilled water return as source for heat pumps</li> </ul> |  |







## Comparison of Refrigerants

| Refrigerant             | Refrigerant Family | GWP   |
|-------------------------|--------------------|-------|
| R22                     | HCFC               | 1,810 |
| R32                     | HFC                | 675   |
| R134A                   | HFC                | 1,430 |
| R290 (propane)          | HC                 | 3.3   |
| R404a                   | HFC                | 3,922 |
| R407c                   | HFC                | 1,774 |
| R410a                   | HFC                | 2,088 |
| R717 (ammonia)          | Inorganic compound | 0     |
| R744 (CO <sub>2</sub> ) | Inorganic compound | 1     |
| R1234ze (E)             | HFO                | ~1    |

## Distributed Energy Resources (DER)

#### TODAY: ONE-WAY POWER SYSTEM

Central, One-Way Power Systems











## O&M Considerations

- Preventive maintenance
- Staffing/training
- Outsourced support
- Safety protocols
- IT Security
- Automation and Programming





**Electrification & Decarbonization:** Exploring U.S. Energy Use and Greenhouse Gas Emissions in Scenarios with Widespread Electrification and Power Sector Decarbonization <u>https://www.nrel.gov/docs/fy17osti/68214.pdf</u>

Orchestrating the energy transition: Tuning into buildings https://www.greenbiz.com/article/orchestrating-energy-transition-tuningbuildings

#### Variable Refrigerant Flow Technology for Commercial Buildings

https://facilityexecutive.com/2019/04/variable-refrigerant-flow-technologycommercial-facilities/







# Case Study



## Existing Building Decarbonization

Steve Abercrombie, South Seattle College March 16, 2023





Sustaining Sponsors

### Broadway Edison – Seattle Central College (SCC)



- 486,000 Square feet
- Oldest building in the Seattle district
- Heating system harks back to the days of steam power

SUSTAINABLE BUILDING SBST

TECHNOLOGY

- Doesn't fit WA state's standard capital funding model
- 60% of SCC's campus, 85% of instructional space
- Steam heating system served by Centrio is reaching a point of system failure

### **GHG Emissions**





1

#### **Replacing Central steam with low carbon heat generation**

- Steam replacement an imperative
- Reduces CO2 and other emissions
- \$23+ million investment
- ~\$1 million increase in annual expense
- Energy consumer -> provider transition
- Living laboratory for students

# Our Vision - A New Approach to Resilient and Clean Infrastructure



- Reduce risk of long-term campus outages (Moving from steam heating to heat pump technology)
- Reduce climate change impact
- Reduce utility increases through efficiencies
- Mitigate increase of deferred maintenance

### Seattle Central College Energy District Approach

SUSTAINABLE BUILDING SCIENCE TECHNOLOGY















Shared Energy

Zero Carbon

Ba

Digital Backbones

E

Building & Utility Partnerships

Engaged Occupants

- Develop a district energy sharing strategy to address energy efficiency, decarbonization and resiliency concerns
- Engage Seattle City Light as a partner to support its electrification and decarbonization goals for Capital Hill
- Onboard key community partners / neighbors to develop and align on the goals and objectives of a Capital Hill Energy District approach & solution
- Capitalize on industry partnerships and experience to develop a strategy and plan to address immediate needs and future goals.





#### **Eco District Site Plan**



**SUSTAINABLE** 

TECHNOLOGY

BUILDING SBST

Addressing deferred infrastructure resiliency risk while decarbonizing.

### Strategy



- Efficiency first:
  - Lighting retrofits
  - Air Source Heat pumps
  - Envelope improvements
- R & D grant from Commerce
  - Installation of Air -> Water heat pump. Demonstrate replacement at central plan
- Major Capital project
  - Working through public funding!?!



SUSTAINABLE BUILDING SBST

TECHNOLOGY



## Join an Information Session!

http://bit.ly/SBST\_Info

#### SBST Program Contacts

Sheila Roe, Interim Program Manager (206) 934-6783 <u>Sheila.Roe@seattlecolleges.edu</u>

Steve Abercrombie, Faculty (206) 934-5375 <u>Steve.Abercrombie@seattlecolleges.edu</u>

<u>https://southseattle.edu/programs/sustainable-building-science-technology</u>



## Q & A



## **Contact Information**



melanie.danuser@neec.net





rebecca.sheppard@neec.net





melissa.sokolowsky@neec.net





steve.abercrombie@seattlecolleges.edu









# **Powerful Facility Energy Conference**





Seattle







Thank You